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Abstract: 

With a simple monetary model and a deviation of inflation from its target following an 

Ornstein-Uhlenbeck process, we derive first the unbiased yield curve formula assuming the 

expectation hypothesis holds and we adapt the expression to account for overreaction (biased 

yield curve). Then, we demonstrate that the biased yield curve is able to reproduce the 

correlation pattern between predicted and realized changes in yield observed on historical 

data. After, we analyze the profitability of the unconditional strategy and show that the 

addition of a negative drift to our model enables to obtain a comparable significantly positive 

Sharpe ratio as with real data, but it is not enough to conclude on the relevance of dealing 

with biased yield curve instead of unbiased yield curve. In the last part, we demonstrate that 

if we consider conditional excess return strategies, then the biased universe enables to get on 

average a positive Sharpe ratio as with historical data, whereas the unbiased universe leads to 

a Sharpe ratio that is not significantly different from zero. We deduce that our overreaction 

model with no risk premium can reproduce the same deviations of the yield curve from the 

expectation hypothesis as in real data.  
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Introduction 

Under modern Fixed Income theory, the yield of a bond is usually thought in terms of 

expectations of future short rates plus a risk premium and a convexity component. Where 

does this come from? Historically, it has been observed that interest rates have been 

significantly cut by the Fed since the 1950s, while the time-average yield curve (Figure 0) has 

been upward sloping. In addition, the carry strategy consisting in investing in long maturity 

bonds, by funding with selling short maturity bonds has been profitable on US Treasuries. 

Hence, a classic explanation consisted in saying that there was a duration risk involved in the 

excess return strategy, and risk-averse investors required a (positive) market premium to 

compensate for this duration risk, thus exerting an upward-sloping pressure on the yield 

curve. However, saying the carry strategy has been profitable on average does not mean it has 

been profitable at any point in time. On Table 0, we notice that the Sharpe ratio of the carry 

strategy has been alternatively positive or negative, depending on the market cycle, ranging 

from 0.82 in recession to 0.01 in expansion and -1.52 in tightening cycles. The subsequent 

existence of a state-dependent risk premium that changes sign depending on the state of the 

economy contradicts the idea that investors are always risk averse. In fact, investors generally 

become risk-seeking in early-stage expansionary cycles by requiring higher duration 

premium from investing in bonds compared to equity and then turn to be more risk averse at 

early-stage recession cycle when bonds act as insurance. The problem here is that changing 

sign risk aversion cannot by itself explain changing sign Sharpe ratios. The profitability of 

the carry strategy as well as the upward sloping time-average yield curve in a declining rate 

environment should be explained as an interaction between Fed’s monetary policy and how 

investors react to it (instead of just whether investors become more or less risk averse). The 

cognitive bias that aims to capture this interaction is overreaction. Under this assumption, 

investors think that it will be more difficult for the Fed to bring inflation back to its target.  If 



we assume no market price of risk but the existence of an overreaction component, are we 

able to build a satisfying model of the yield curve? This is the question we will try to solve in 

the thesis.  

                               

Table 0: Sharpe ratio of the carry strategy for several maturities and economic cycles. Data is 

adapted from Naik, Devarajan, Nowobiski, Page and Pedersen (2016) 

 

 



Figure 0: Difference between average yield and 1-year yield of EUR and USD discount 

bonds, for several maturities.  

 

I) The model that was used to simulate the yield curve 

The aim of this part is to simulate the yield curve, under two hypotheses: 

• Assumption 1: We are given a simple monetary model, where the deviation of 

inflation from its Fed’s target will follow an Ornstein-Uhlenbeck process. 

• Assumption 2: Given short rates and inflation processes, we can derive the yield curve 

at any maturity, by adding an overreaction component.   

We will use the work of Gennaioli and Shleifer (2018) to construct a straightforward 

monetary model with risk-neutral investors who overreact.  

 

1) Deriving short rate and inflation processes 

The aim of a Central Bank is to keep the inflation close to a given target. In the United States 

and in the Eurozone, this target is generally between 2% and 3%. Every dt year, the Fed 

observes inflation πt, how it deviates from its target θ. Then, it rises or decreases the short rate 

by an amount drt. Eventually, this change in drt, combined with a stochastic component, will 

contribute to move inflation by an amount dπt. We assume that investors are risk-neutral, so 

no risk premium should be added in the short rate process.  

 

We call εt, the deviation of inflation from its target at time t: 



i) εt = πt – θ 

 

The change in the short rate is completely determined by εt and is assumed to be proportional 

to εt dt, with a constant A>0 corresponding to how aggressive the Fed is in trying to bring 

back inflation to its target θ.  

 

ii) drt = A εt dt 

It is indeed logic to consider that if the Fed meets less often (dt large), then it will need to 

make bigger adjustments in the short rate.  

 

Then, inflation will move following a diffusion process: 

iii) dπt = -B drt + σ dzt 

-B drt indicates how the monetary policy on the short rate is able to affect the inflation 

process. If inflation is above its target (εt >0), then the Fed is going to hike rates (A εt dt >0), 

which will contribute in lowering inflation (-B drt <0). Conversely, if we are in a recessionary 

environment with inflation below its target, then the Fed will choose to cut rates so that 

inflation rises up to its target level.  

 

Finally, from i) we get  dεt = dπt and deduce in iii) that dεt = -B drt + σ dzt, then, replacing drt 

by its expression in ii) we deduce the following process: 

iv) dεt = -AB εt dt + σ dzt 

We take kappa = AB and can rewrite iv) as following: 

v) dεt = -kappa εt dt + σ dzt 



We observe a simple stochastic gradient descent (Ornstein-Uhlenbeck process), where the 

potential is given by: 

vi) V(X) = 0.5 (kappa) X2 

This potential pushes X to the minimizer of V which is 0. Without the stochastic component 

(ordinary differential equation), (εt)t would converge in long time to 0. As σ > 0, we can 

prove that: 

(εt) converges in Law to N(0, σ2/(2 kappa)). 

 

 

2) Deriving an explicit formula for the yield curve 

 

We would like to get an explicit formula for yt
T (the yield at time t of a discount bound of 

maturity T).  

step 1: 

Starting from t, the solution of v) is: 

For any s > t: 

Ɛs = exp(-kappa (s-t)) (Ɛt + σ ∫ exp(𝑘𝑎𝑝𝑝𝑎 ∗ 𝑢) 𝑑𝐵𝑢
𝑠

𝑡
), where (Bt)t is a Brownian motion.  

As the function defined by f (u) = exp(kappa*u) is deterministic, and as the Brownian motion 

has zero expected value, we deduce that: 

For any s > t: Et (Ɛs) = exp(-kappa (s-t)) Et (Ɛt) 

As Ɛt is measurable with respect to Ft (where (Ft)t is the natural filtration), then: 

Et (Ɛt) = Ɛt 

Finally, we get: Et (Ɛs) = exp(-kappa (s-t)) * Ɛt 



step 2: 

If we integrate equation ii) between t and s, we get: 

rs – rt = A∫ Ɛ(𝑢) 𝑑𝑢
𝑠

𝑡
 

Now we take the expectation at time t and use the previous result of step 1. We find: 

Et (rs) = rt + A Ɛt ∫ exp(−𝑘𝑎𝑝𝑝𝑎 ∗ (𝑢 − 𝑡)) 𝑑𝑢
𝑠

𝑡  

Hence, Et (rs) = rt + A Ɛt   
1−exp (−𝑘𝑎𝑝𝑝𝑎∗(𝑠−𝑡))

𝑘𝑎𝑝𝑝𝑎
 

step 3: 

As we assume there is no risk premium, and as we neglect convexity, we have according to 

the expectation hypothesis: 

yt
T = 

1

𝑇−𝑡
 Et (∫ 𝑟(𝑠)𝑑𝑠

𝑇

𝑡
) 

So, using the result from step 2 and the Fubini theorem: 

yt
T  = 

1

𝑇−𝑡
 ∫ (𝑟(𝑠) + 

𝑇

𝑡
𝐴Ɛ(𝑡) 

1−exp (−𝑘𝑎𝑝𝑝𝑎∗(𝑠−𝑡))

𝑘𝑎𝑝𝑝𝑎
 ) 𝑑𝑠 

Hence, we get the final result: 

(*) yt
T = rt + 

𝑨Ɛ(𝒕)

𝒌𝒂𝒑𝒑𝒂
 (1- 

𝟏−𝐞𝐱𝐩 (−𝒌𝒂𝒑𝒑𝒂∗(𝑻−𝒕))

𝒌𝒂𝒑𝒑𝒂∗(𝑻−𝒕)
 ) 

This result holds in the unbiased universe only. If we want to work in the biased universe, we 

need to introduce a new constant: kappa_bias that is different from kappa. Then, two 

constants will be required to simulate the biased yield curve: 

• kappa for simulating the short rate process (rt)t and (Ɛt)t 

• kappa_bias when we have simulated the previous (rt)t and (Ɛt)t processes and we 

would like to simulate the (yt
T)t process.  

We get the following equation under overreaction hypothesis: 

(**)  yt
T = rt + 

𝑨Ɛ(𝒕)

𝒌𝒂𝒑𝒑𝒂_𝒃𝒊𝒂𝒔
 (1- 

𝟏−𝐞𝐱𝐩 (−𝒌𝒂𝒑𝒑𝒂_𝒃𝒊𝒂𝒔∗(𝑻−𝒕))

𝒌𝒂𝒑𝒑𝒂_𝒃𝒊𝒂𝒔∗(𝑻−𝒕)
 ) 



Here, kappa_bias = A * B_bias where B_bias < B. It means biased investors behave as if the 

inflation process reacted less to monetary changes in the short rate than in the unbiased 

universe. It is equivalent to say that biased investors overestimate the difficulty of the Central 

Bank to bring back inflation to its target.  

 

 

 

II) Application: Simulation of the yield curve on Python 

1) Algorithm 

 

 



 

Explanation: 

• In the first block, we initialize the variables and parameters. kappa_bias and kappa are 

equal to 1 and 1.6. The inflation today is 3.5%, and the long-term reversion target of 

the Fed is 2.5%. The Fed can take decisions every month (dt=1/12) and the initial 

short rate is 2.0%. The size of the period to simulate is 10000/12=834 years and the 

maximum maturity for any yield curve will be 10 years.   

• In the second block, we define the function simu_y that returns two arrays. The first 

one contains all the unbiased yield curves from time 0 to time 10,000. The second one 

contains all the biased yield curves from time 0 to time 10,000. At any time t, 

(corresponding to index i), we calculate rt (equation ii), Ɛt (equation v). Then, for any 

maturity T (corresponding to index j), we deduce yt
T in the unbiased and biased cases 

(equations * and **).  

• In the third block we plot the unbiased and biased yield curves at time 0, with the 

setting B_bias = 1. And specify a volatility of inflation of 0.02 per year.  

 

2) Results 



 

Figure 1: Representation of the unbiased and biased yield curves at t=0 

 

 

Figure 2: Representation of a downward sloping yield curve at time 100, for a given path.  

 



We can see that the biased yield curve amplifies the slope of the unbiased yield curve in 

absolute value: if the unbiased yield curve is upward sloping, then the biased yield curve will 

be even more upward sloping. If the unbiased yield curve is downward sloping, then the 

biased yield curve will be even more downward sloping.  

 

3) Observation of the inflation and short rate processes 

a) Distribution of (Ɛt)t for t large (t=10000) 

 

Figure 3: Distribution of 200 paths of (Ɛt)t for t=10000 (we look at terminal value) 

 

When we generate 200 paths of (Ɛt)t processes for a given t (large), the results behave like a 

normal distribution, centered in 0, with standard deviation tending to s= sqrt(σ2/(2 kappa)), 

when t is very large. For σ=0.02 and kappa=1.6, s is close to 0.01. So with a probability of 

68%, the inflation deviates from its target by less than 1%.   



All the results lie in the range (-0.04, 0.04), but with a very large number of simulations, the 

probability of staying in the range (-0.03, 0.03) is 99.7%. As εt = πt – θ (from i), with              

θ = 0.025, this gives us that all the possible inflation values when t is large lie between -0.5% 

and 5.5%, but on average inflation is in the long run close to its target of 2.5% since (Ɛt)t has 

zero expectation.  

 

b) Short rate process 

We want to study the effect kappa has on the short rate. For this, we decided to consider three 

values of kappa: 1.3, 1.6 and 2.0. The algorithm is very similar to the previous one with the 

simu_y function. The only difference is that we generate three different short rate processes 

and three different inflation processes (with kappa1, kappa2, kappa3), and we carefully apply 

the same gaussian variable at each step for these processes. Below are examples of paths we 

can observe.  

 

 



 

Figure 4: Short rate and inflation curves for one path with three different values of kappa: 1.3 

(blue curve), 1.6 (brown curve), 2.0 (red curve) 

 

 

Figure 4: Other path example of short rate curves for three values of kappa 



 

Figure 5: Other path example of short rate curves for three values of kappa 

 

With the three above examples, we notice that for negative values of the short rate, the red 

curve (kappa = 2) is above the blue and the brown curves, whereas for positive values of the 

short rate, the red curve is below the blue and the brown curve. Hence, it can be deduced that 

a high kappa has the effect of reducing the magnitude of the short rate process. This same 

observation can be applied to the inflation process: the oscillations are higher for low values 

of kappa (kappa = 1.3) and lower for larger values of kappa (kappa = 2).  

 

III) Analysis of the correlations between predicted and 

realized changes in yield 

 

1) Methodology 



In this section, we intend to check whether the deviations from the expectation hypothesis 

observed with real data, are also reproduced in our biased universe with simulated data. The 

first test we are going to perform is whether the 1-period (n-1) maturity forward yield that is 

set at time t gives an unbiased estimator of the (n-1) maturity future yield that will prevail at 

time t+1.  

We have:  

vii) Fyt
n-1 = - 

𝟏

𝒏−𝟏
 log ( Pt

n/Pt
1) 

where Fyt
n-1 is the 1-period, (n-1) maturity forward rate that is set at time t, Pt

n is the price at 

time t of an n-year maturity discount bond, Pt
1 is the price at time t of a 1-year maturity 

discount bond. The forward rate defined with equation (vii) is equal to the (n-1) maturity 

yield that would prevail at time t+1 such that the excess return strategy would have zero 

profitability.  

If the expectation hypothesis holds, the predicted change in yield should be equal to the 

realized change in yield. Working with historical data, biased simulated data and unbiased 

simulated data, we are therefore going to build the regression:  

(viii) yt+1
n-1 – yt

n = αn + βn (Fyt
n-1 – yt

n) 

In the case of an univariate regression: Y = BX + A, we have B = Cov(X,Y) / V(X) where 

Cov(X,Y) in the covariance of X and Y variables, and V(X) is the variance of X. We can 

therefore write B = Corr(X,Y) 
𝜎(𝑌)

σ(X)
 where Corr(X,Y) is the correlation between X and Y, 

σ(X) and σ(Y) are the standard deviations of X and Y.  

So instead of analyzing coefficients αn and βn for each maturity n (between 1 and 9), we are 

just going to compute Corr(X,Y)n , the correlation between predicted changes in yields 

(variable X) and realized changes in yields (variable Y), for maturity n.  



In the absence of a risk-premium (risk-neutral investors), if the expectation hypothesis was 

true, then predicted and realized changes in yields should have a correlation curve that is 

decreasing with maturities, but which is always positive. We could expect to have a 

correlation curve that tends to zero when maturity increases, and the maximum is reached for 

short maturity (1-year in our case).  It is logic since in the short run, future yields should be 

more impacted by their predictions (forward yields) than in the long run.  

 

2) Python Algorithm used for the simulated data 

 

 

 



Explanation: We create a function correl that takes B, B_bias, sigma_infl, theta_infl as 

arguments and returns two lists. Both lists return the correlations between predicted and 

realized changes in yields, for maturities going from one year to nine year. The difference is 

that the first list refers to unbiased data (kappa = kappa_biased), while the second list is 

obtained in the biased universe (kappa_bias < kappa).  

From line 3 to 13, we just create all the arrays we will use later. 

From line 15 to 28, the code is almost the same as what we did to simulate the yield curve 

previously. We just added the calculation of unbiased and biased discount bond prices at time 

i for maturity j.  

From line 29 to 33, we calculate the prices of unbiased and biased 1-period forward bonds 

and deduce the unbiased and biased 1-period forward yields (at time i, with maturity j-1). The 

calculation corresponds to equation (vii).  

From line 35 to 38, we compute the realized and predicted changes in yields, in the unbiased 

and biased cases. For a given time t, and a given maturity n, the realized change in yield is the 

difference between the n-maturity yield at time t and the n-maturity yield at time t-12 (one 

year before). For the predicted change, we consider the 1-period forward rate (that was set at 

time t-12) instead of the yield at time t.  

From line 41 to 45, we loop on all maturities j (going from 1 to 9) and calculate the 

corresponding correlations between predicted and realized changes in yield, in the unbiased 

and biased cases.  

 

3) Calculation of the correlations on historical data 



 

The historical data we have chosen comes from Gurkaynak, Sack, and Wright (2007). It 

corresponds to the yields of synthetic discount bonds obtained by least-square fit to the prices 

of nominal and real Treasuries using the popular Nelson and Siegel (1987) model. They 

cover the period 31-Dec-1971 to 30-Sep-2020.  

Starting from monthly data of USD Treasury bills, from 12/31/1971 to 09/30/2020, with 

maturity ranging from 1 to 10 years, we implemented the same principle as before to build 

the realized change table and the predicted change table.  

 

 

Figure 6: Calculation of the correlations on historical data 

From these tables, we are able to calculate the corresponding correlations in Excel and 

perform a test-statistic.  

This test-statistic enables us to assess the significance of the correlations calculated 

previously.  

By definition, for this test, we have: 

(ix) t = r√
𝑵−𝟐

𝟏−𝒓^𝟐
 , where r in the correlation coefficient 

We consider the test: 

Correl 0.10989 0.035343 -0.01591 -0.05607 -0.08712 -0.11102 -0.12962 -0.1444 -0.15641 -0.00042 -0.07128 -0.11046 -0.1387 -0.15934 -0.1747 -0.18661 -0.19624 -0.20425

t_stat 2.644207 0.845815 -0.38052 -1.34302 -2.09157 -2.67165 -3.12648 -3.49013 -3.78732 -0.01 -1.70919 -2.65803 -3.34961 -3.86018 -4.24338 -4.54278 -4.78655 -4.99014

pred_Ch real_change

1 year 2 years 3 years 4 years 5 years 6 years 7 years 8 years 9 years 1 year 2 years 3 years 4 years 5 years 6 years 7 years 8 years 9 years

31-déc-71 0.008741 0.006947 0.005644 0.004681 0.003956 0.003401 0.002967 0.002623 0.002346 0.013028 0.011292 0.00946 0.007877 0.006588 0.005557 0.004733 0.004069 0.003528

31-janv-72 0.013534 0.009555 0.007135 0.005588 0.004548 0.003817 0.003281 0.002874 0.002556 0.018949 0.013593 0.009981 0.007579 0.00594 0.004781 0.003929 0.003282 0.002776

29-févr-72 0.012881 0.009379 0.007147 0.005666 0.004645 0.003913 0.003371 0.002956 0.00263 0.022309 0.017494 0.013787 0.010984 0.008869 0.007258 0.006015 0.00504 0.004262

31-mars-72 0.011015 0.006403 0.004366 0.003286 0.002631 0.002192 0.001879 0.001644 0.001462 0.019697 0.012964 0.009527 0.007605 0.006418 0.005621 0.005051 0.004623 0.00429

30-avr-72 0.012615 0.008396 0.006059 0.004659 0.003757 0.00314 0.002693 0.002357 0.002096 0.021856 0.015252 0.011342 0.008996 0.007491 0.006462 0.00572 0.005161 0.004726

31-mai-72 0.009834 0.007354 0.005708 0.00458 0.003783 0.003202 0.002765 0.002428 0.002163 0.024652 0.017594 0.013545 0.010917 0.0091 0.00779 0.006812 0.006061 0.005468

30-juin-72 0.00864 0.005579 0.003964 0.003027 0.002434 0.002031 0.001742 0.001524 0.001355 0.025119 0.015893 0.011826 0.009608 0.008235 0.007309 0.006645 0.006147 0.005759

31-juil-72 0.012433 0.007479 0.005156 0.003893 0.003119 0.0026 0.002229 0.00195 0.001733 0.039173 0.026675 0.020685 0.017512 0.015585 0.014297 0.013377 0.012686 0.012149

31-août-72 0.007948 0.005348 0.003883 0.002994 0.002418 0.002022 0.001735 0.001518 0.00135 0.029681 0.018971 0.013376 0.010364 0.00868 0.007695 0.007087 0.006688 0.006412

30-sept-72 0.007514 0.004804 0.003398 0.002589 0.00208 0.001736 0.001488 0.001302 0.001158 0.018274 0.010482 0.006555 0.004635 0.003784 0.003507 0.003532 0.003708 0.003951

31-oct-72 0.007964 0.004663 0.003186 0.002399 0.001921 0.001601 0.001372 0.001201 0.001067 0.01559 0.009091 0.00666 0.005483 0.004794 0.00434 0.004016 0.003773 0.003584

30-nov-72 0.007484 0.004801 0.003401 0.002593 0.002084 0.001739 0.001491 0.001305 0.00116 0.018599 0.01116 0.007973 0.006229 0.005149 0.004421 0.003899 0.003507 0.003202

31-déc-72 0.005268 0.003331 0.002344 0.001782 0.001431 0.001194 0.001023 0.000896 0.000796 0.015454 0.00868 0.006235 0.005321 0.004959 0.0048 0.00472 0.004673 0.004641

31-janv-73 0.002821 0.001458 0.000943 0.000697 0.000555 0.000462 0.000396 0.000346 0.000308 0.008547 0.004557 0.003899 0.004056 0.00435 0.00462 0.004837 0.005008 0.005144

28-févr-73 0.003251 0.001411 0.00057 0.000191 2.4E-05 -4.6E-05 -7.2E-05 -7.9E-05 -7.7E-05 0.005536 0.002179 0.001884 0.002133 0.002488 0.002833 0.003136 0.003392 0.003605

31-mars-73 -0.00245 -0.00212 -0.00159 -0.00122 -0.00098 -0.00082 -0.0007 -0.00061 -0.00055 0.011668 0.008598 0.008003 0.007828 0.007748 0.007699 0.007665 0.007639 0.007619

30-avr-73 -0.00059 -0.00077 -0.00057 -0.00044 -0.00035 -0.00029 -0.00025 -0.00022 -0.00019 0.020493 0.016119 0.014199 0.013137 0.012476 0.01203 0.01171 0.01147 0.011283

31-mai-73 -0.00428 -0.00225 -0.0015 -0.00112 -0.0009 -0.00075 -0.00064 -0.00056 -0.0005 0.014197 0.012529 0.011605 0.011085 0.010766 0.010552 0.010399 0.010284 0.010195

30-juin-73 -0.00981 -0.00513 -0.00342 -0.00257 -0.00205 -0.00171 -0.00147 -0.00128 -0.00114 0.009572 0.012036 0.012134 0.01183 0.011496 0.011205 0.010965 0.010771 0.010613

31-juil-73 -0.01256 -0.00776 -0.00524 -0.00393 -0.00314 -0.00262 -0.00225 -0.00197 -0.00175 -0.00047 0.004587 0.006482 0.006929 0.00678 0.00635 0.005773 0.005117 0.004417



H0: “Predicted change and realized change variables are not correlated”, and we take a 95% 

confidence interval. Using equation (ix), the t-stats are the following: 

 

• For 1 year maturity, the t_stat is 2.644207, which is greater than 1.96, so we reject the 

null with a 95% confidence level. 

• For 2,3 and 4 year maturities, the t_stats are 0.85, -0.38, -1.34 which are less than 1.96 

in absolute value. So we do not reject the null hypothesis.  

• For maturities greater than 5 years, all the t_stats are greater than 1.96 in absolute 

value, so we reject the null with a 95% confidence level.  

Hence, if for short to medium maturities, the results are quite in accordance with the 

expectation hypothesis (correlation is significantly positive for small maturities, and then 

decreases to zero and become insignificant when we move to longer maturities), for long 

maturities (greater than 5 years), the results deviate from the expectation hypothesis. This is 

caused by correlations becoming significantly negative as well as even more negative when 

the maturity increases.   

 

4) Results of correlations in the unbiased & biased universe and comparison 

with historical data 

Correl 0.10989 0.035343 -0.01591 -0.05607 -0.08712 -0.11102 -0.12962 -0.1444 -0.15641

t_stat 2.644207 0.845815 -0.38052 -1.34302 -2.09157 -2.67165 -3.12648 -3.49013 -3.78732



 

Figure 7: Correlation curves for historical data, unbiased simulated data and biased simulated 

data, for maturity going from 1 year to 9 years.  

 

The results validate the patterns we expected before: 

• The unbiased simulated data is in accordance with the expectation hypothesis. 

• The biased simulated data is able to reproduce the same deviation pattern from the 

expectation hypothesis as the historical data, with positive correlation at the short end, 

negative and decreasing correlations at the long end. In addition, the curves seem to 

be very close to each other, and even cross, which is a good sign! It may also suggest 

that the choice of parameters that was used to simulate the biased yield curves   



(kappa = 1.6, kappa_bias = 1) is acceptable for explaining the real yield curves’ 

behaviors.  

Interpretation: Positive correlations at the short end is plausible since future yields will be 

more affected by expectations. Negative correlations can indicate that future yields will 

correct for overreaction: since investors overreact in the biased universe: a positive predicted 

change in yield will have a tendency to be associated with a negative realized change in yield 

and vice versa. Also, the lower kappa_bias compared to kappa (the more investors overreact), 

the more negative will be the correlations for long maturities i.e. the more aggressive will be 

the market correction.  

If a clear correlation similarity can be identified between the biased model and historical data, 

what can we say about the profitability of the carry strategy? Do we observe analogous 

Sharpe ratios? This is the question we are going to tackle in part IV.   

 

IV) Comparison of biased and unbiased models with historical 

data, in terms of profitability of the excess return strategy 

 

1) The unconditional excess return strategy 

We recall that in terms of yields, the excess return generated by investing in a bond of 

maturity n, funded by the borrow of a bond of maturity 1 year will be approximately in one 

year:  

(x)  xrett
n = nyt

n – (n-1)yt+1
n-1 – yt

1 

At each time t, we calculate xrett
n given by equation (x), and then we take the Sharpe ratio 



(mean divided by standard deviation of all (xrett
n)t over the full sample (10,000 simulations in 

our case). Finally, we take the mean of the sharpe ratios for all maturities and we abserve the 

following results:  

 

Figure 8: Histogram of the distribution of unconditional strategy on the unbiased universe 



 

Figure 9: Histogram of the distribution of unconditional strategy on biased universe 

 

So for the biased and unbiased universe, the unconditional strategy follows a Gaussian 

distribution, centered at zero, with a standard deviation that is not significantly different from 

zero. We can therefore say that on average, the unconditional strategy has zero expected 

return. This can be explained by two different reasons: 

• In the unbiased universe, the expectation hypothesis holds, so forward rates come true 

and the excess return strategy yields zero expected return. 

• In the biased universe, the expectation hypothesis is not satisfied. However, the 

profits made when the yield curve is upward sloping are offset by the loss made when 

the yield curve is downward sloping. Indeed, as there is zero drift about future interest 



rates, the probability of having rising or decreasing interest rates is the same at each 

time t (we do not take a directional bet on interest rates). We understand here why the 

unconditional excess return strategy leads on average to a Sharpe ratio of zero.  

 

What do we observe on real data?  

 

Figure 10: Sharpe ratio as a function of period of investment for the unconditional strategy, 

on full sample data (from 31-dec-71 to 30-sept-2020) 

 

On real data, we observe significantly positive Sharpe ratios on the full sample, for the 

unconditional strategy. There is no reason to think that it is necessarily due to the existence of 

a risk premium. We can interpret this discrepancy between real and simulated data by the 

existence of an additional negative drift in interest rates on historical data, that is equal to 

zero in the simulated data. A negative drift is clearly profitable for the excess return strategy 

since it will enable on average to borrow each year short-term maturity bonds at a lower rate, 

while keeping the yields of long-term bonds unchanged during the period of investment.  
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Let’s see how our simulated data reacts to the addition of drift comparable to what we 

observe on real data.  

If we assume a drift of -2.5 bps per month, we can obtain results that are quite close to the 

Sharpe ratio curve above.  

We would like to quantify the impact the drift has on the Sharpe ratio. To do this, we will 

focus only on a 2-year investment horizon. As the Sharpe ratio values are simulation 

dependents, for each drift, we will simulate 100 paths of yields curves, and take the average 

of the subsequent 100 Sharpe ratios.  

 

 

Figure 11: Average Sharpe Ratios of the excess return strategy in the unbiased and biased 

universe, as a function of the additional negative drift (in the short rate) per month.  

 

We notice that the drift has a significant impact on the average Sharpe ratio: for a drift close 

to zero, we obtain a Sharpe ratio that is not significantly different from zero, which is in 

accordance with our previous results of the unconditional strategy. Then, the average Sharpe 

Ratio is an increasing function of the (negative) drift. For a drift of -2.5 bps per month, we 



get a Sharpe ratio of about 0.3, which is consistent with what we observe on real data (Sharpe 

Ratio = 0.32).  

Summary: the addition of a drift enables to explain why the Sharpe Ratio is significantly 

different from zero in the real data, compared to simulated data for both biased and unbiased 

universe. However, not only are we assuming that rates are constantly declining (and this 

assumption may not hold in the future, as we currently see with the Fed rates that are close to 

5% on May 2023, the highest level since 2006), but by adding this drift, assuming 

overreaction becomes also completely useless, since as we see in Figure 11, the average 

Sharpe Ratio increases similarly for both biased and unbiased universe.  

 

2) The conditional excess return strategy 

We will call slope for time t, with maturity T > 1, the quantity: 

Slopet
T = yt

T – rt (difference between the T-year maturity bond and the short rate at time t) 

From equation (**), previously derived, it holds in the biased universe that:  

(**) yt
T – rt = 

𝑨Ɛ(𝒕)

𝒌𝒂𝒑𝒑𝒂_𝒃𝒊𝒂𝒔
 (1- 

𝟏−𝐞𝐱𝐩 (−𝒌𝒂𝒑𝒑𝒂_𝒃𝒊𝒂𝒔∗(𝑻−𝒕))

𝒌𝒂𝒑𝒑𝒂_𝒃𝒊𝒂𝒔∗(𝑻−𝒕)
 ) 

Similarly, from equation (*), we have in the unbiased universe: 

(*) yt
T - rt = + 

𝑨Ɛ(𝒕)

𝒌𝒂𝒑𝒑𝒂
 (1- 

𝟏−𝐞𝐱𝐩 (−𝒌𝒂𝒑𝒑𝒂∗(𝑻−𝒕))

𝒌𝒂𝒑𝒑𝒂∗(𝑻−𝒕)
 ) 

The sign of the slope is then completely determined by the position of inflation, above or 

below its target. If inflation is above its target, investors think that the Fed is going to hike 

rates in the future and the yield curve is upward sloping. Conversely, if inflation is below its 

target, investors think that the Fed is going to cut interest rates in the future to relaunch the 

economy, so the yield curve is downward sloping. Hence, the slope enables to capture the 

economic cycle: expansionary when the slope is positive, in (early-stage) recession when the 



slope is negative (inverted yield curve).  

For what follows, we will take the 1 year maturity yield instead of the short rate, in the 

formula of the slope. So we will define: 

Slopet
T = yt

T – yt
1 (differente between T year and 1 year maturity yields at time t) 

The conditional excess return strategy consists in: 

• Buying T year maturity bonds by borrowing 1 year maturity bonds, when the slope is 

positive 

• Selling T year maturity bonds and lending 1 year maturity bonds, when the slope is 

negative 

We will compare the conditional Sharpe ratios of the biased and unbiased universe. We will 

consider the unbiased slope (for the unbiased yield curve) and the biased slope (for the biased 

yield curve).  

Let’s see how the algorithm works: 

 



 

 

Figure 12: Conditional strategy Algorithm 

 

On this Algorithm in Figure 12, lines 1 to 32 are very similar to what was done previously 

and consist in building the unbiased and biased yield curves. On lines 34 and 35, we calculate 

the biased and unbiased slopes at time t (difference between the 10 year and 1 year maturity 

yields). From line 38 to 48, we make the difference between excess returns and conditional 

excess returns. While excess returns have been previously defined with equation (x): 

( (x)  xrett
n = nyt

n – (n-1)yt+1
n-1 – yt

1 ), conditional excess returns are obtained by multiplying 

the excess returns by the slope, at each time t. If the slope is positive (upward sloping yield 

curve), then a positive excess return implies a positive conditional excess return, which leads 

to a gain at time t. Conversely, if the slope is negative (downward sloping yield curve), as we 

apply a reverse carry strategy, a negative excess return will lead to a positive conditional 

excess return (and therefore a profit at t). In addition, multiplying the excess return by the 

slope, (instead of just its sign) also enables to account for the magnitude of the conviction on 

how strongly we should go carry or reverse carry.  

 

The results are the following: 



For the conditional carry strategy, we implemented 300 simulations on the unbiased universe 

 

Figure 13: results of the conditional strategy on the unbiased universe 

 

We observe on Figure 13, that the average of all the simulated Sharpe ratios of the 

conditional strategy on the unbiased universe is very close to zero (about 5 x 10-5). In 

addition, the probability of observing a positive Sharpe ratio is close to 50% (51.7%). Those 

results are in accordance with the intuition, and the fact that interest rates have zero drift 

(contrary to the assumption made on previous part).  

For the biased universe, we would like to study how the choice of Bbias affect the value of the 

Sharpe ratio. So, for a range of Bbias between 0.8 and 1.6 (1.6 is the value of B so it is an 

upper bound for Bbias ) we computed the average Sharpe ratio (based on 100 simulations for 

each value of Bbias). Calculating average values enable to remove the noise in the randomness 

of Sharpe ratios, and to isolate the effect of Bbias on the Sharpe ratios. We got the following 

curve: 



 

Figure 14: Effect of Bbias on the average Sharpe ratio value, by applying the conditional 

strategy on the biased universe 

 

We observe a satisfying and consistent result. We can observe a (negative) and almost linear 

relationship between Bbias and the average Sharpe ratio. When there is no overreaction      

(Bbias = B = 1.6), the average Sharpe ratio is close to zero and we recover the previous result 

for the unbiased universe. When there is overreaction, the greater the magnitude of this 

overreaction (ie the lower the value of Bbias) the higher the average Sharpe ratio.  

Now, we would like to see how the conditional strategy has historically performed on real 

data. So we import the history of USD yields for period 1971-12-31/2020-09-30 into a 

Python Data frame called df_array2 and we get the following result: 



 

Figure 15: Implementing the conditional strategy on full sample real data 

 

We can clearly see that the conditional strategy has been profitable, with a Sharpe ratio of 

about 0.39. It is even higher than most of the average Sharpe ratios obtained on Figure 14, 

when we let Bbias vary.  

 

 

 

 

Conclusion: 

A large part of Fixed Income Research employs the traditional rational-asset pricing setting, 

well described in studies from Fama (1989), Stambaug (1988), Fama and French (1986), 

Dahlquist and Hasseltoft (2016). By incorporating overreaction through an altered reversion 

speed in our yield curve model, we have shown that representativeness bias could be a 

stronger assumption than the existence of a market price of risk, the latter raising the problem 

of changing sign risk premium depending on the business cycle. We have undertaken 

correlation analysis and conditional excess return strategies and proved we recovered the 



same deviations from the expectation hypothesis in the biased universe as with historical 

data. Of course, we do not exclude a coexistence between risk premium and overreaction: the 

fact the conditional strategy on real data outperforms the conditional strategy in the biased 

universe (for several reversion speeds) shows that there should be other factors to consider 

when modelling the yield curve. It could be the subject of another thesis.  
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